The ABCs of MI Locks

  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

It's time for a review of the basic concepts of MI locks. These examples will help.


In computer science, a lock is a synchronization mechanism for enforcing limits on access to a resource in an environment where there are many threads of execution. In IBM i, locks are implemented in such a complex and sophisticated manner that they cannot be compared directly with their counterparts in common platforms, such as semaphores, critical sections, read/write locks, and mutexes.


The design of IBM i locks allows OS applications and user programs to achieve fine-grained control of resources and escape some common problems with lock implementations. At the MI level, some of the complex and versatile locking support is arranged and exposed to user programs in the form of a bunch of lock management MI instructions. This article reviews the basic concepts of MI locks by looking at some easy-to-follow examples and experiments.


In this article, I refer to an IBM i job (or an MI process at the MI level) simply as process; the term lock requester means a process or a thread; and the term lock target means an MI object lock or a space location to lock.


More examples of using MI lock instructions written in ILE RPG can be found here.

Types of MI Locks

IBM allows user programs to acquire or release the following types of MI locks:


The most significant difference between these two types of MI locks is that object locks are at the granularity of an MI object, while space location locks are at the granularity of each single byte in the associated space of an MI object.


(Note: The Lock Teraspace Storage Location (LOCKTSL) and Unlock Teraspace Storage Location (UNLCKTSL) can be used to lock/unlock either a Teraspace location or a Single Level Store (SLS) space location. For reasons of simplicity, these instructions and Teraspace location locks are not covered in this article.)


Here's an explanation of the common lock allocation procedure of MI locks:

  • A single lock-acquisition instruction (LOCK or LOCKSL) can request the allocation of one or more lock states on one or more lock targets (MI objects or space locations). Locks are allocated sequentially until all locks requested are allocated.
  • When two or more threads are competing for a conflicting lock allocation on a lock target, the machine attempts to first satisfy the lock allocation request of the thread with the highest priority. Within that priority, the machine attempts to satisfy the request that has been waiting longest.
  • If any exception is identified during the instruction's execution, any locks already granted by the instruction are released, and the lock request is canceled.
  • For each object lock, counts are kept by lock state and by thread, process, or transaction control structure. When a lock request is granted, the appropriate lock count of each lock state specified is incremented by 1. For each space location lock, counts are kept by lock state and by thread. If a transfer of an object lock from another thread causes a previously unsatisfied lock request to become satisfied, the lock request and the transfer lock are treated independently relative to lock accounting. The appropriate lock counts are incremented for both the lock request and the transfer lock function.

Lock States

Unlike common lock mechanisms, such as mutexes or read/write locks in which lock states are very limited, MI locks can request one or more of all the following five lock states on the lock targets:

  • LSRD—The lock target can be shared with another lock requester if the user does not request exclusive use of the lock target. That is, another user can request a LSRO, LSUP, LEAR, or LSRD lock state.
  • LSRO—The lock target can be shared with another lock requester if the lock requester requests either a LSRO lock state or a LSRD lock state. This lock state is appropriate when a user does not intend to change a lock target but wants to ensure that no other user changes the lock target.
  • LSUP—The lock target can be shared either for update or read with another lock requester. That is, another user can request either a LSRD lock state or a LSUP lock state for the same lock target. This lock state is appropriate when a user intends to change a lock target but wants to allow other users to read or change the same lock target.
  • LEAR—The lock target is allocated to the lock requester that requests it, but other lock requesters can read the lock target. This lock is appropriate when a user wants to prevent other users from performing any operation other than a read.
  • LENR—The lock target is reserved for the exclusive use of the requesting lock requester; no other lock requesters can use the lock target. However, if the lock target is already allocated to another lock requester, you cannot get exclusive use of the lock target. This lock state is appropriate when a user does not want any other user to have access to the lock target until the function being performed is complete.


The following table shows the valid lock state combinations for an object.


Valid Lock State Combinations

Lock state held by one lock requester

Another lock requester can obtain this lock state












The design of the multiple lock states is important. First, this design can help lower the performance overhead due to lock contention, which is a common problem with usual lock mechanisms. For example, if a lock requester requests only LSRD on a lock target, no lock contention will occur between it and other lock requesters who request a LSRO, LSUP, or LEAR lock on the same lock target. Second, this design can help user programs and OS applications avoid deadlocks, which are more common in other platforms, where most lock mechanisms available are mutually exclusive locks.


It's interesting that, except for the Lock Management MI instructions, the only interfaces IBM provides to user programs to acquire or release an MI lock are CL commands: the Allocate Object (ALCOBJ) command and the Deallocate Object (DLCOBJ) command. Users can use them to acquire or release object locks conveniently either interactively or in programs. These commands use a set of special values to indicate different lock states. For convenience, I list the mapping of MI lock state names and lock state special values used by ALCOBJ and DLCOBJ in the table below.



Mapping from MI Lock State Names to CL Lock State Special Values

MI Lock State

CL Lock State












To obtain the mapping table shown above, you can follow a simple experiment like this:


1. Select an MI object as your lock target (say, a program object called *LIBL/MAPMAP).

2. Obtain the 8-byte SLS virtual address of MAPMAP by dumping it (via the Dump Object (DMPOBJ) command or the Dump System Object (DMPSYSOBJ)) or find it in the SST via object name and MI object type/subtype code. Let's say the address of MAPMAP is hex 060A6CEBB4000000.

3. Acquire a specific lock state on MAPMAP using the ALCOBJ command. For example, acquire a LENR lock by ALCOBJ ((MAPMAP *PGM *EXCL)).

4. Examine the lock record via the advanced analysis macro LOCKINFO of the System Service Tool (SST)—for example, LOCKINFO 060A6CEBB4000000. Check the MI lock state name in the output of macro LOCKINFO, and you will discover that *EXCL means MI lock state LENR. An example output is the following:



     DISPLAY/ALTER/DUMP                                               12/04/09  17:44:16   PAGE      1

Running macro: LOCKINFO                         060A6CEBB4000000                                                                  


Dumping lock table                                                                            

Hold Records in HoldHashTableEntryBlock C00000200000FB00 for object address 060A6CEBB4000000    

 Task B000C00002AC8000 holds 1 Process scoped LENR Lock NOT Monitored

187C871D81003FBC-progrm QSYS/QDMLOCK+0x2A3C Inst# 0x1E6     


lockinfo complete


5. Release the acquired lock on MAPMAP via the DLCOBJ command. For example, DLCOBJ ((MAPMAP *PGM *EXCL)).

6. Repeat steps 1 through step 5 for each of other lock states.

Lock Request Types

With a single LOCK or LOCKSL instruction, a lock requester can request one or more lock states on one or more MI objects or space locations. An MI lock request can be one of the following types:

  • Immediate request—If all locks cannot be immediately granted, a Lock Request Not Grantable (hex 1A02) exception (aka MCH2602) will be raised.
  • Synchronous request—Wait until all locks can be granted for a specified time interval or infinitely.
  • Asynchronous request (available only for MI object locks)—Allow processing to continue and signal event when the object is available.


For an asynchronous object lock request, if the asynchronous lock request is satisfied, then the Object Locked (hex 000A,01,01) event is signaled to the requesting thread. If the request is not satisfied in the specified time interval, the Asynchronous Lock Wait Timeout (hex 000A,04,01) event is signaled to the requesting thread. No locks are granted, and the lock request is canceled. If an object is destroyed while a thread has a pending request to lock the object, the Object Destroyed (hex 000A,02,01) event is signaled to the waiting thread. These events are signaled to the requesting thread, regardless of the scope of the requested lock. If the invocation issuing the asynchronous object lock request is terminated, the lock request remains active.


Let's experiment with different lock request tests using the following example program, lock01.rpgle.


     h dftactgrp(*no)

      /copy mih-lock

      /copy mih-ptr

     d main            pr                  extpgm('LOCK01')

     d   request_type                 1a


     d lock_request    ds                  qualified

     d   base                              likeds(lock_request_tmpl_t)

     d   obj                           *

     d   lock_state                   1a


     d main            pi

     d   request_type                 1a



           lock_request.base = *allx'00';

           lock_request.base.num_requests = 1;

           lock_request.base.offset_lock_state = 32;

           lock_request.base.lock_opt = x'4200'; // Synchronous request

                                                 // and wait indefinitely.

           // Lock myself

           rslvsp_tmpl.obj_type = x'0201';

           rslvsp_tmpl.obj_name = 'LOCK01';

           rslvsp2(lock_request.obj : rslvsp_tmpl);

           lock_request.lock_state = x'09';      // LENR lock

           if request_type = 'I';

               lock_request.base.lock_opt = x'0200'; // Immediate request

           elseif request_type = 'A';

               lock_request.base.lock_opt = x'8200'; // Asynchronous request



           lockobj(lock_request);  // Lock myself with specified lock request type

           *inlr = *on;



For example, you may start two interactive jobs: JOB#A and JOB#B. Type the following commands in JOB#A and JOB#B.







CALL LOCK01 X  /* Request a LENR lock on *PGM LOCK01 synchronously */


CALL LOCK01 I  /* Request an immediate LENR lock on *PGM LOCK01 */


CALL LOCK01 A  /* Request a LENR lock on *PGM LOCK01 asynchronously */


The Work with Object Locks (WRKOBJLCK) command is helpful when checking current lock status of a given object (including acquired lock states or lock states being requested synchronously or asynchronously). For example, when JOB#B requests an asynchronous LENR lock on *PGM LOCK01, the output of command WRKOBJLCK LOCK01 *PGM might like this:


Opt   Job          User         Lock      Status          Scope     Thread  

 _    JOB#A        LJL          *EXCL      HELD           *JOB              

 _    JOB#B        LJL          *EXCL      REQ            *JOB      00000064

Lock Scopes

In common platforms, locks are usually scoped to thread, while MI locks may be scoped to three different lock scopes. Space location locks acquired by LOCKSL can only be scoped to thread; object locks and space location locks acquired by LOCKTSL can be scoped to a thread, a process, or a transaction control structure. Locks scoped to a thread can never conflict with a lock scoped to its containing process, but may conflict with a lock scoped to a different process, a transaction control structure, or any other thread (depending on the lock states involved). Locks scoped to a transaction control structure attached to the current thread may conflict with a lock scoped to a different transaction control structure, a process, or any other thread (depending on the lock states involved).


What's a Transaction Control Structure (TCS) object? It's an MI object type whose MI object type code is hex 23. You can find out the sub-object types of TCS via the lsobjtypes QShell utility provided by the i5/OS Programmer's Toolkit.


> lsobjtypes | grep '^23'

  23A1  CDJOBLK          # Job/activation-group level commit definition or XA

                               commitment definition with job scoped locks

  23A0  CDTCSLK          # XA commitment definition with transaction scoped locks

  2300  TCS               # Transaction Control Structure



Note: Common job-level or activation-group level commitment definitions are also represented by the 23A1 TCS object since the introduction of the TCS MI object.


For detailed information about XA support provided by IBM i, please refer to documentation on XA APIs in the IBM i Information Center.


A nice article written by Jarek Miszczyk in 2007 is also available at MC Press Online: "Bridge the Legacy-to-Java Transition with DB2 for i5/OS Distributed Transactions."


Allocated process scope locks are released when the process terminates. Allocated thread scope locks are released when the thread terminates. If a thread requested a process scope lock, the process will continue to hold that lock after termination of the requesting thread. If a thread requested a transaction control structure scope lock, the transaction control structure will continue to hold that lock after the termination of the requesting thread. If a thread is terminated while waiting for a lock with a lock request type of either synchronous or asynchronous, the lock request is canceled regardless of the scope of the requested lock.

Authority Required to Acquire MI Object Locks

To acquire a space location lock via a valid space pointer, the lock requester need not have any authority to the MI object that the space pointer addresses. But to acquire an object lock, the condition is somewhat different:

  • First, the lock requester needs Execute authority to the contexts (libraries) referenced for address resolution.
  • Second, the lock requester needs some authority to the target object.


The document of the ALCOBJ command says: The user issuing the command must have object operational (*OBJOPR) authority to the object.


The document of the LOCK instruction in the information center says: Authorization required to the object to be locked: Some authority or ownership.


When an MI object is created via CL commands or APIs, full authorities to the object are always granted to its owner user profile. Then, what does some authority mean? If you are really curious about it, try a simple experiment like the following:

  • Say program object I#PGM is owned by user USER#A, and its public authority is set to *EXCLUDE.
  • Say another user, USER#B, has no source of authority to obtain any authority to program I#PGM (e.g., via authorization lists or primary group (PGP)).
  • Grant any one of the object authorities or data authorities to USER#B on program I#PGM by the Grant Object Authority (GRTOBJAUT) command or the Edit Object Authority (EDTOBJAUT) command. Object authorities to an object are *OBJEXIST, *OBJMGT, *OBJOPR, *OBJALTER, *OBJREF, and *AUTL; data authorities to an object are *READ, *ADD, *DLT, *UPD, and *EXECUTE. For example, GRTOBJAUT OBJ(*LIBL/I#PGM) OBJTYPE(*PGM) USER(USER#B) AUT(*READ).
  • Finally, try to lock I#PGM in an interactive job under user profile USER#B. For example, ALCOBJ ((*LIBL/I#PGM *PGM *EXCL)).


Now, you should have the answer!

Advisory Locks or Mandatory Locks?

In common platforms, most locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data. However, some platforms also implement mandatory locks, where attempts of unauthorized access to a locked resource will force an exception in the entity attempting to make the access. So, are MI locks advisory locks or mandatory locks?


Space location locks are advisory locks. No matter what states of lock are being allocated by a thread on a space location, another thread can do whatever it wants to the space location: changing data content at the space location, extending or truncating the space object, and even destroying the space object.


Unlike space location locks, in a sense, MI object locks are mandatory locks. Locks are not required in order for an object to be referred to (or modified by) an instruction. However, a process or thread is not allowed to use an object if any other process or other thread in the same process holds a conflicting lock. This is referred to as Lock Enforcement Rules in MI documentation. For example, when a LSRO lock on the owner user profile of a permanent space object or the context the space object resides in is held by another thread, a thread issuing a Destroy Space (DESS) MI instruction on the space object will cause an Invalid Lock State (hex 1A01) exception (aka MCH2601), which means one or more lock enforcement rules are violated when an attempt is made to access an MI object. Another example occurs in the previous section of this article, Lock Request Types, where although JOB#A holds a LENR lock on program object LOCK01, JOB#B can still call it as usual; this is because no lock enforcement rule is enforced on the Call External (CALLX) instruction of the called program object.


For lock enforcement rules enforced on an individual MI instruction, please refer to the Lock Enforcement section in the MI instruction's documentation.


Note that it's a good convention to acquire proper lock states on a shared object before actually accessing it so that the lock enforcement rules can help you to guarantee the integrity of your data and application systems. APIs and CL commands that access objects are a good example of this. For example, when a HLL program opens a physical file for reading, the QSYS/QDMCOPEN API will acquire a LSRO lock on the *FILE object (with MI object type code/sub-type code hex 1901), and the QSYS/QDBOPEN API will acquire a LSRO lock on the data space object (*QDDS, with MI object type code/subtype code hex 0B90) of the physical file.

Object Lock Transferring

As mentioned above, when multiple threads are competing for a conflicting object lock, the system satisfies one of the multiple lock requests according to thread priorities and waiting time of the threads. Besides the system coordinating mechanism, IBM i provides an alternative method to allow a process to transfer an object lock it holds to another process. After the transferring, the latter process becomes the new holder of the object lock. The MI instruction we can use to achieve object lock transferring is Transfer Object Lock (XFRLOCK). The first operand of XFRLOCK is a system pointer to the receiving process's Process Control Space (PCS) object.


Here, I'd like to demonstrate the use of object lock transferring with a simple and interesting experiment. Imagine we have a User Space (*USRSPC) object called BALL, and we want BALL available to only one of a couple of jobs (JOB#A and JOB#B) at any given time. We'll let one of the two jobs, say JOB#A, hold a LENR lock on BALL and then transfer the LENR lock on BALL to JOB#B when JOB#B needs to use BALL. Thus, the LENR lock on BALL is transferred between JOB#A and JOB#B repeatedly, and no other job can have the opportunity to acquire any kind of lock on BALL. Objects involved in this experiment are the following:

  • *USRSPC PCSPTR—The PCS pointer of the job to receive the LENR lock on BALL is stored at the beginning of PCSPTR's associated space.
  • *PGM LOCK03—LOCK03 writes the PCS pointer of the current process to the beginning of the associated space of PCSPTR.
  • *PGM LOCK02—LOCK02 transfers the LENR lock on BALL to the process identified by the PCS pointer stored in the associated space of PCSPTR.


Here's the source of OPM MI program LOCK03, lock03.emi:



 * @file lock03.emi


 * Saves the PCS pointer of the current process in 1934 space PCSPTR


dcl sysptr space auto init (

        "PCSPTR", type(spc, h'34')

)                               ;


dcl dd tmpl char(32) auto bdry(16)  ;

dcl spcptr tmpl-ptr auto init(tmpl) ;

dcl spc * bas(tmpl-ptr)             ;

        dcl dd bin bin(4) dir       ;

        dcl dd bout bin(4) dir      ;

        dcl dd * char(8) dir        ;

        dcl sysptr pcs-ptr dir      ;


        cpynv bin, 32               ;

        matpratr tmpl-ptr, *, x'25' ;

brk '1'                             ;


dcl spcptr space-ptr auto       ;

dcl spc pcs-t bas(space-ptr)    ;

        dcl sysptr tgt-ptr dir  ;


        rslvsp space, *, *, *   ;

        setsppfp space-ptr, space ;

        cpybwp tgt-ptr, pcs-ptr   ;

brk 'END'                       ;

        rtx *                   ;

pend                            ;



Here's the source of ILE RPG program LOCK02, lock02.rpgle:


     h dftactgrp(*no)

      /copy mih-lock

      /copy mih-ptr

     d main            pr                  extpgm('LOCK02')

     d   obj_name                    30a

     d   obj_type                     2a


      * System pointer to *USRSPC PCSPTR

     d                 ds

     d spcobj@                         *   procptr

     d spcobj                          *   overlay(spcobj@)

      * Space pointer addresses the associated space of *USRSPC PCSPTR

     d spp             s               *

     d                 ds                  based(spp)

     d   pcs                           *


     d lock_request    ds                  qualified

     d   base                              likeds(lock_request_tmpl_t)

     d   obj                           *

     d   lock_state                   1a


     d main            pi

     d   obj_name                    30a

     d   obj_type                     2a



           // Lock transfer request template

           lock_request.base = *allx'00';

           lock_request.base.num_requests = 1;

           lock_request.base.offset_lock_state = 32;

           lock_request.base.lock_opt = x'0000';

           rslvsp_tmpl.obj_type = obj_type;

           rslvsp_tmpl.obj_name = obj_name;

           rslvsp2(lock_request.obj : rslvsp_tmpl);

           lock_request.lock_state = x'09';      // LENR lock


           // Retrieve the PCS pointer of the receiving process

           rslvsp_tmpl.obj_type = x'1934';

           rslvsp_tmpl.obj_name = 'PCSPTR';

           rslvsp2(spcobj : rslvsp_tmpl);

           spp = setsppfp(spcobj@);


           // Transfer the lock to the receiving process

           xfrlock(pcs : lock_request);

           *inlr = *on;



Now, let's start our ball-passing experiment. Use the Work with Object Lock (WRKOBJLCK) command to check which job is currently holding the lock on BALL.


Steps of the BALL-Passing Experiment






JOB#A acquires an LENR lock on BALL



JOB#B stores its PCS pointer in PCSPTR

CALL LOCK02 (BALL X'1934')


JOB#A transfers the lock to JOB#B



JOB#A stores its PCS pointer in PCSPTR


CALL LOCK02 (BALL X'1934')

JOB#B transfers the lock to JOB#A



Now the lock is held by JOB#A again


Deadlocks are a well-known problem with most lock mechanisms, especially where locks are always mutually exclusive locks. Software failures due to deadlocks are hard to detect or reproduce. The design of MI lock states is helpful in avoiding this problem, but the possibility of deadlocks still remains. The following is a simple example. Imagine we have two CL programs: PGM#A and PGM#B.



             ALCOBJ     OBJ((SPCA *USRSPC *SHRNUP))

             DLYJOB     DLY(10)

             ALCOBJ     OBJ((SPCB *USRSPC *SHRUPD)) WAIT(32767)



             ALCOBJ     OBJ((SPCB *USRSPC *SHRNUP))

             DLYJOB     DLY(10)

             ALCOBJ     OBJ((SPCA *USRSPC *SHRUPD)) WAIT(32767)


Submit two jobs like the following:




The result is that either of the two submitted jobs enters lock-waiting status. The object lock statuses of *USRSPC SPCA and SPCB are the following.



Opt   Job          User         Lock      Status          Scope     Thread 

      JOB#A        LJL          *SHRNUP    HELD           *JOB             

      JOB#B        LJL          *SHRUPD    WAIT           *JOB      0000017E



Opt   Job          User         Lock      Status          Scope     Thread 

      JOB#A        LJL          *SHRUPD    WAIT           *JOB      0000011D

      JOB#B        LJL          *SHRNUP    HELD           *JOB             


JOB#A is waiting for a LSUP lock on SPCB, which conflicts with the LSRO lock on SPCB held by JOB#B. And JOB#B is waiting for a LSUP lock on SPCA, which conflicts with the LSRO lock on SPCA held by JOB#A. This is a deadlock condition, since neither of the lock requests can be satisfied and neither of the two jobs will have the opportunity to recover from the deadlock.


So, as you might have already guessed, it's a good idea to avoid acquiring unnecessarily strict locks on lock targets (for example, a LENR lock when what you need is only to change the data content of your lock target). Stricter locks are more likely to cause blocking or deadlocks.


Additionally, to avoid deadlocks on a group of logically related lock targets, it will be helpful to standardize the lock acquisition sequences so that locks on the lock targets are acquired and released in the same order for each thread that uses this group of lock targets.


Junlei Li

Junlei Li is a programmer from Tianjin, China, with 10 years of experience in software design and programming. Junlei Li began programming under i5/OS (formerly known as AS/400, iSeries) in late 2005. He is familiar with most programming languages available on i5/OS—from special-purpose languages such as OPM/ILE RPG to CL to general-purpose languages such as C, C++, Java; from strong-typed languages to script languages such as QShell and REXX. One of his favorite programming languages on i5/OS is machine interface (MI) instructions, through which one can discover some of the internal behaviors of i5/OS and some of the highlights of i5/OS in terms of operating system design.


Junlei Li's Web site is, where his open-source project i5/OS Programmer's Toolkit ( is documented.



Support MC Press Online





  • Mobile Computing and the IBM i

    SB ASNA PPL 5450Mobile computing is rapidly maturing into a solid platform for delivering enterprise applications. Many IBM i shops today are realizing that integrating their IBM i with mobile applications is the fast path to improved business workflows, better customer relations, and more responsive business reporting.

    This ASNA whitepaper takes a look at mobile computing for the IBM i. It discusses the different ways mobile applications may be used within the enterprise and how ASNA products solve the challenges mobile presents. It also presents the case that you already have the mobile programming team your projects need: that team is your existing RPG development team!

    Get your copy today!

  • Automate IBM i Operations using Wireless Devices

    DDL SystemsDownload the technical whitepaper on MANAGING YOUR IBM i WIRELESSLY and (optionally) register to download an absolutely FREE software trail. This whitepaper provides an in-depth review of the native IBM i technology and ACO MONITOR's advanced two-way messaging features to remotely manage your IBM i while in or away from the office. Notify on-duty personnel of system events and remotely respond to complex problems (via your Smartphone) before they become critical-24/7. Problem solved!

    Order your copy here.

  • DR Strategy Guide from Maxava: Brand New Edition - now fully updated to include Cloud!


    Download your free copy of DR Strategy Guide for IBM i from Maxava today.


  • White Paper: Node.js for Enterprise IBM i Modernization

    SB Profound WP 5539

    If your business is thinking about modernizing your legacy IBM i (also known as AS/400 or iSeries) applications, you will want to read this white paper first!

    Download this paper and learn how Node.js can ensure that you:
    - Modernize on-time and budget - no more lengthy, costly, disruptive app rewrites!
    - Retain your IBM i systems of record
    - Find and hire new development talent
    - Integrate new Node.js applications with your existing RPG, Java, .Net, and PHP apps
    - Extend your IBM i capabilties to include Watson API, Cloud, and Internet of Things

    Read Node.js for Enterprise IBM i Modernization Now!


  • 2020 IBM i Marketplace Survey Results


    This year marks the sixth edition of the popular IBM i Marketplace Survey Results. Each year, HelpSystems sets out to gather data about how businesses use the IBM i platform and the IT initiatives it supports. Year over year, the survey has begun to reveal long-term trends that give insight into the future of this trusted technology.

    More than 500 IBM i users from around the globe participated in this year’s survey, and we’re so happy to share the results with you. We hope you’ll find the information interesting and useful as you evaluate your own IT projects.

  • AIX Security Basics eCourse

    Core Security

    With so many organizations depending on AIX day to day, ensuring proper security and configuration is critical to ensure the safety of your environment. Don’t let common threats put your critical AIX servers at risk. Avoid simple mistakes and start to build a long-term plan with this AIX Security eCourse. Enroll today to get easy to follow instructions on topics like:

    • Removing extraneous files
    • Patching systems efficiently
    • Setting and validating permissions
    • Managing service considerations
    • Getting overall visibility into your networks


  • Developer Kit: Making a Business Case for Modernization and Beyond

    Profound Logic Software, Inc.

    Having trouble getting management approval for modernization projects? The problem may be you're not speaking enough "business" to them.

    This Developer Kit provides you study-backed data and a ready-to-use business case template to help get your very next development project approved!

  • What to Do When Your AS/400 Talent Retires

    HelpSystemsIT managers hoping to find new IBM i talent are discovering that the pool of experienced RPG programmers and operators or administrators is small.

    This guide offers strategies and software suggestions to help you plan IT staffing and resources and smooth the transition after your AS/400 talent retires. Read on to learn:

    • Why IBM i skills depletion is a top concern
    • How leading organizations are coping
    • Where automation will make the biggest impact


  • IBM i Resources Retiring?

    SB HelpSystems WC GenericLet’s face it: IBM i experts and RPG programmers are retiring from the workforce. Are you prepared to handle their departure?
    Our panel of IBM i experts—Chuck Losinski, Robin Tatam, Richard Schoen, and Tom Huntington—will outline strategies that allow your company to cope with IBM i skills depletion by adopting these strategies that allow you to get the job done without deep expertise on the OS:
    - Automate IBM i processes
    - Use managed services to help fill the gaps
    - Secure the system against data loss and viruses
    The strategies you discover in this webinar will help you ensure that your system of record—your IBM i—continues to deliver a powerful business advantage, even as staff retires.


  • Backup and Recovery Considerations for Security Data and Encrypted Backups

    SB PowerTech WC GenericSecurity expert Carol Woodbury is joined by Debbie Saugen. Debbie is an expert on IBM i backup and recovery, disaster recovery, and high availability, helping IBM i shops build and implement effective business continuity plans.
    In today’s business climate, business continuity is more important than ever. But 83 percent of organizations are not totally confident in their backup strategy.
    During this webinar, Carol and Debbie discuss the importance of a good backup plan, how to ensure you’re backing up your security information, and your options for encrypted back-ups.

  • Profound.js: The Agile Approach to Legacy Modernization

    SB Profound WC GenericIn this presentation, Alex Roytman and Liam Allan will unveil a completely new and unique way to modernize your legacy applications. Learn how Agile Modernization:
    - Uses the power of Node.js in place of costly system re-writes and migrations
    - Enables you to modernize legacy systems in an iterative, low-risk manner
    - Makes it easier to hire developers for your modernization efforts
    - Integrates with Profound UI (GUI modernization) for a seamless, end-to-end legacy modernization solution


  • Data Breaches: Is IBM i Really at Risk?

    SB PowerTech WC GenericIBM i is known for its security, but this OS could be more vulnerable than you think.
    Although Power Servers often live inside the safety of the perimeter firewall, the risk of suffering a data leak or data corruption remains high.
    Watch noted IBM i security expert Robin Tatam as he discusses common ways that this supposedly “secure” operating system may actually be vulnerable and who the culprits might be.

    Watch the webinar today!


  • Easy Mobile Development

    SB Profound WC GenericWatch this on-demand webinar and learn how to rapidly and easily deploy mobile apps to your organization – even when working with legacy RPG code! IBM Champion Scott Klement will demonstrate how to:
    - Develop RPG applications without mobile development experience
    - Deploy secure applications for any mobile device
    - Build one application for all platforms, including Apple and Android
    - Extend the life and reach of your IBM i (aka iSeries, AS400) platform
    You’ll see examples from customers who have used our products and services to deliver the mobile applications of their dreams, faster and easier than they ever thought possible!


  • Profound UI: Unlock True Modernization from your IBM i Enterprise

    SB Profound PPL 5491Modern, web-based applications can make your Enterprise more efficient, connected and engaged. This session will demonstrate how the Profound UI framework is the best and most native way to convert your existing RPG applications and develop new modern applications for your business. Additionally, you will learn how you can address modernization across your Enterprise, including databases and legacy source code, with Profound Logic.

  • Node Webinar Series Pt. 1: The World of Node.js on IBM i

    Profound Logic Software, Inc.Have you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application.

    Part 1 will teach you what Node.js is, why it's a great option for IBM i shops, and how to take advantage of the ecosystem surrounding Node.

    In addition to background information, our Director of Product Development Scott Klement will demonstrate applications that take advantage of the Node Package Manager (npm).

  • 5 New and Unique Ways to Use the IBM i Audit Journal

    SB HelpSystems ROBOT GenericYou must be asking yourself: am I doing everything I can to protect my organization’s data? Tune in as our panel of IBM i high availability experts discuss:

    - Why companies don’t test role swaps when they know they should
    - Whether high availability in the cloud makes sense for IBM i users
    - Why some organizations don’t have high availability yet
    - How to get high availability up and running at your organization
    - High availability considerations for today’s security concerns

  • Profound.js 2.0: Extend the Power of Node to your IBM i Applications

    SB Profound WC 5541In this Webinar, we'll demonstrate how Profound.js 2.0 enables you to easily adopt Node.js in your business, and to take advantage of the many benefits of Node, including access to a much larger pool of developers for IBM i and access to countless reusable open source code packages on npm (Node Package Manager).
    You will see how Profound.js 2.0 allows you to:

    • Provide RPG-like capabilities for server-side JavaScript.
    • Easily create web and mobile application interfaces for Node on IBM i.
    • Let existing RPG programs call Node.js modules directly, and vice versa.
    • Automatically generate code for Node.js.
    • Automatically converts existing RPGLE code into clean, simplified Node.js code.

    Download and watch today!


  • Make Modern Apps You'll Love with Profound UI & Profound.js

    SB Profound WC 5541Whether you have green screens or a drab GUI, your outdated apps can benefit from modern source code, modern GUIs, and modern tools.
    Profound Logic's Alex Roytman and Liam Allan are here to show you how Free-format RPG and Node.js make it possible to deliver applications your whole business will love:

    • Transform legacy RPG code to modern free-format RPG and Node.js
    • Deliver truly modern application interfaces with Profound UI
    • Extend your RPG applications to include Web Services and NPM packages with Node.js


  • Accelerating Programmer Productivity with Sequel


    Most business intelligence tools are just that: tools, a means to an end but not an accelerator. Yours could even be slowing you down. But what if your BI tool didn't just give you a platform for query-writing but also improved programmer productivity?
    Watch the recorded webinar to see how Sequel:

    • Makes creating complex results simple
    • Eliminates barriers to data sources
    • Increases flexibility with data usage and distribution

    Accelerated productivity makes everyone happy, from programmer to business user.

  • Business Intelligence is Changing: Make Your Game Plan

    SB_HelpSystems_WC_GenericIt’s time to develop a strategy that will help you meet your informational challenges head-on. Watch the webinar to learn how to set your IT department up for business intelligence success. You’ll learn how the right data access tool will help you:

    • Access IBM i data faster
    • Deliver useful information to executives and business users
    • Empower users with secure data access

    Ready to make your game plan and finally keep up with your data access requests?


  • Controlling Insider Threats on IBM i

    SB_HelpSystems_WC_GenericLet’s face facts: servers don’t hack other servers. Despite the avalanche of regulations, news headlines remain chock full of stories about data breaches, all initiated by insiders or intruders masquerading as insiders.
    User profiles are often duplicated or restored and are rarely reviewed for the appropriateness of their current configuration. This increases the risk of the profile being able to access data without the intended authority or having privileges that should be reserved for administrators.
    Watch security expert Robin Tatam as he discusses a new approach for onboarding new users on IBM i and best-practices techniques for managing and monitoring activities after they sign on.

  • Don't Just Settle for Query/400...

    SB_HelpSystems_WC_GenericWhile introducing Sequel Data Access, we’ll address common frustrations with Query/400, discuss major data access, distribution trends, and more advanced query tools. Plus, you’ll learn how a tool like Sequel lightens IT’s load by:

    - Accessing real-time data, so you can make real-time decisions
    - Providing run-time prompts, so users can help themselves
    - Delivering instant results in Microsoft Excel and PDF, without the wait
    - Automating the query process with on-demand data, dashboards, and scheduled jobs

  • How to Manage Documents the Easy Way

    SB_HelpSystems_WC_GenericWhat happens when your company depends on an outdated document management strategy?
    Everything is harder.
    You don’t need to stick with status quo anymore.
    Watch the webinar to learn how to put effective document management into practice and:

    • Capture documents faster, instead of wasting everyone’s time
    • Manage documents easily, so you can always find them
    • Distribute documents automatically, and move on to the next task


  • Lessons Learned from the AS/400 Breach

    SB_PowerTech_WC_GenericGet actionable info to avoid becoming the next cyberattack victim.
    In “Data breach digest—Scenarios from the field,” Verizon documented an AS/400 security breach. Whether you call it AS/400, iSeries, or IBM i, you now have proof that the system has been breached.
    Watch IBM i security expert Robin Tatam give an insightful discussion of the issues surrounding this specific scenario.
    Robin will also draw on his extensive cybersecurity experience to discuss policies, processes, and configuration details that you can implement to help reduce the risk of your system being the next victim of an attack.

  • Overwhelmed by Operating Systems?

    SB_HelpSystems_WC_GenericIn this 30-minute recorded webinar, our experts demonstrate how you can:

    • Manage multiple platforms from a central location
    • View monitoring results in a single pane of glass on your desktop or mobile device
    • Take advantage of best practice, plug-and-play monitoring templates
    • Create rules to automate daily checks across your entire infrastructure
    • Receive notification if something is wrong or about to go wrong

    This presentation includes a live demo of Network Server Suite.


  • Real-Time Disk Monitoring with Robot Monitor

    SB_HelpSystems_WC_GenericYou need to know when IBM i disk space starts to disappear and where it has gone before system performance and productivity start to suffer. Our experts will show you how Robot Monitor can help you pinpoint exactly when your auxiliary storage starts to disappear and why, so you can start taking a proactive approach to disk monitoring and analysis. You’ll also get insight into:

    • The main sources of disk consumption
    • How to monitor temporary storage and QTEMP objects in real time
    • How to monitor objects and libraries in real time and near-real time
    • How to track long-term disk trends



  • Stop Re-keying Data Between IBM I and Other Applications

    SB_HelpSystems_WC_GenericMany business still depend on RPG for their daily business processes and report generation.Wouldn’t it be nice if you could stop re-keying data between IBM i and other applications? Or if you could stop replicating data and start processing orders faster? Or what if you could automatically extract data from existing reports instead of re-keying? It’s all possible. Watch this webinar to learn about:

    • The data dilemma
    • 3 ways to stop re-keying data
    • Data automation in practice

    Plus, see how HelpSystems data automation software will help you stop re-keying data.


  • The Top Five RPG Open Access Myths....BUSTED!

    SB_Profound_WC_GenericWhen it comes to IBM Rational Open Access: RPG Edition, there are still many misconceptions - especially where application modernization is concerned!

    In this Webinar, we'll address some of the biggest myths about RPG Open Access, including:

    • Modernizing with RPG OA requires significant changes to the source code
    • The RPG language is outdated and impractical for modernizing applications
    • Modernizing with RPG OA is the equivalent to "screen scraping"


  • Time to Remove the Paper from Your Desk and Become More Efficient

    SB_HelpSystems_WC_GenericToo much paper is wasted. Attempts to locate documents in endless filing cabinets.And distributing documents is expensive and takes up far too much time.
    These are just three common reasons why it might be time for your company to implement a paperless document management system.
    Watch the webinar to learn more and discover how easy it can be to:

    • Capture
    • Manage
    • And distribute documents digitally


  • IBM i: It’s Not Just AS/400


    IBM’s Steve Will talks AS/400, POWER9, cognitive systems, and everything in between

    Are there still companies that use AS400? Of course!

    IBM i was built on the same foundation.
    Watch this recorded webinar with IBM i Chief Architect Steve Will and IBM Power Champion Tom Huntington to gain a unique perspective on the direction of this platform, including:

    • IBM i development strategies in progress at IBM
    • Ways that Watson will shake hands with IBM i
    • Key takeaways from the AS/400 days


  • Ask the RDi Experts

    SB_HelpSystems_WC_GenericWatch this recording where Jim Buck, Susan Gantner, and Charlie Guarino answered your questions, including:

    • What are the “hidden gems” in RDi that can make me more productive?
    • What makes RDi Debug better than the STRDBG green screen debugger?
    • How can RDi help me find out if I’ve tested all lines of a program?
    • What’s the best way to transition from PDM to RDi?
    • How do I convince my long-term developers to use RDi?

    This is a unique, online opportunity to hear how you can get more out of RDi.


  • Node.js on IBM i Webinar Series Pt. 2: Setting Up Your Development Tools

    Profound Logic Software, Inc.Have you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application. In Part 2, Brian May teaches you the different tooling options available for writing code, debugging, and using Git for version control. Attend this webinar to learn:

    • Different tools to develop Node.js applications on IBM i
    • Debugging Node.js
    • The basics of Git and tools to help those new to it
    • Using as a pre-built development environment



  • Inside the Integrated File System (IFS)

    SB_HelpSystems_WC_GenericDuring this webinar, you’ll learn basic tips, helpful tools, and integrated file system commands—including WRKLNK—for managing your IFS directories and Access Client Solutions (ACS). We’ll answer your most pressing IFS questions, including:

    • What is stored inside my IFS directories?
    • How do I monitor the IFS?
    • How do I replicate the IFS or back it up?
    • How do I secure the IFS?

    Understanding what the integrated file system is and how to work with it must be a critical part of your systems management plans for IBM i.


  • Expert Tips for IBM i Security: Beyond the Basics

    SB PowerTech WC GenericIn this session, IBM i security expert Robin Tatam provides a quick recap of IBM i security basics and guides you through some advanced cybersecurity techniques that can help you take data protection to the next level. Robin will cover:

    • Reducing the risk posed by special authorities
    • Establishing object-level security
    • Overseeing user actions and data access

    Don't miss this chance to take your knowledge of IBM i security beyond the basics.



  • 5 IBM i Security Quick Wins

    SB PowerTech WC GenericIn today’s threat landscape, upper management is laser-focused on cybersecurity. You need to make progress in securing your systems—and make it fast.
    There’s no shortage of actions you could take, but what tactics will actually deliver the results you need? And how can you find a security strategy that fits your budget and time constraints?
    Join top IBM i security expert Robin Tatam as he outlines the five fastest and most impactful changes you can make to strengthen IBM i security this year.
    Your system didn’t become unsecure overnight and you won’t be able to turn it around overnight either. But quick wins are possible with IBM i security, and Robin Tatam will show you how to achieve them.

  • How to Meet the Newest Encryption Requirements on IBM i

    SB PowerTech WC GenericA growing number of compliance mandates require sensitive data to be encrypted. But what kind of encryption solution will satisfy an auditor and how can you implement encryption on IBM i? Watch this on-demand webinar to find out how to meet today’s most common encryption requirements on IBM i. You’ll also learn:

    • Why disk encryption isn’t enough
    • What sets strong encryption apart from other solutions
    • Important considerations before implementing encryption



  • Security Bulletin: Malware Infection Discovered on IBM i Server!

    SB PowerTech WC GenericMalicious programs can bring entire businesses to their knees—and IBM i shops are not immune. It’s critical to grasp the true impact malware can have on IBM i and the network that connects to it. Attend this webinar to gain a thorough understanding of the relationships between:

    • Viruses, native objects, and the integrated file system (IFS)
    • Power Systems and Windows-based viruses and malware
    • PC-based anti-virus scanning versus native IBM i scanning

    There are a number of ways you can minimize your exposure to viruses. IBM i security expert Sandi Moore explains the facts, including how to ensure you're fully protected and compliant with regulations such as PCI.



  • Fight Cyber Threats with IBM i Encryption

    SB PowerTech WC GenericCyber attacks often target mission-critical servers, and those attack strategies are constantly changing. To stay on top of these threats, your cybersecurity strategies must evolve, too. In this session, IBM i security expert Robin Tatam provides a quick recap of IBM i security basics and guides you through some advanced cybersecurity techniques that can help you take data protection to the next level. Robin will cover:

    • Reducing the risk posed by special authorities
    • Establishing object-level security
    • Overseeing user actions and data access




  • 10 Practical IBM i Security Tips for Surviving Covid-19 and Working From Home

    SB PowerTech WC GenericNow that many organizations have moved to a work from home model, security concerns have risen.

    During this session Carol Woodbury will discuss the issues that the world is currently seeing such as increased malware attacks and then provide practical actions you can take to both monitor and protect your IBM i during this challenging time.


  • How to Transfer IBM i Data to Microsoft Excel

    SB_HelpSystems_WC_Generic3 easy ways to get IBM i data into Excel every time
    There’s an easy, more reliable way to import your IBM i data to Excel? It’s called Sequel. During this webinar, our data access experts demonstrate how you can simplify the process of getting data from multiple sources—including Db2 for i—into Excel. Watch to learn how to:

    • Download your IBM i data to Excel in a single step
    • Deliver data to business users in Excel via email or a scheduled job
    • Access IBM i data directly using the Excel add-in in Sequel

    Make 2020 the year you finally see your data clearly, quickly, and securely. Start by giving business users the ability to access crucial business data from IBM i the way they want it—in Microsoft Excel.



  • HA Alternatives: MIMIX Is Not Your Only Option on IBM i

    SB_HelpSystems_WC_GenericIn this recorded webinar, our experts introduce you to the new HA transition technology available with our Robot HA software. You’ll learn how to:

    • Transition your rules from MIMIX (if you’re happy with them)
    • Simplify your day-to-day activities around high availability
    • Gain back time in your work week
    • Make your CEO happy about reducing IT costs

    Don’t stick with a legacy high availability solution that makes you uncomfortable when transitioning to something better can be simple, safe, and cost-effective.



  • Node Webinar Series Pt. 1: The World of Node.js on IBM i

    SB Profound WC GenericHave you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application.
    Part 1 will teach you what Node.js is, why it's a great option for IBM i shops, and how to take advantage of the ecosystem surrounding Node.
    In addition to background information, our Director of Product Development Scott Klement will demonstrate applications that take advantage of the Node Package Manager (npm).
    Watch Now.

  • The Biggest Mistakes in IBM i Security

    SB Profound WC Generic The Biggest Mistakes in IBM i Security
    Here’s the harsh reality: cybersecurity pros have to get their jobs right every single day, while an attacker only has to succeed once to do incredible damage.
    Whether that’s thousands of exposed records, millions of dollars in fines and legal fees, or diminished share value, it’s easy to judge organizations that fall victim. IBM i enjoys an enviable reputation for security, but no system is impervious to mistakes.
    Join this webinar to learn about the biggest errors made when securing a Power Systems server.
    This knowledge is critical for ensuring integrity of your application data and preventing you from becoming the next Equifax. It’s also essential for complying with all formal regulations, including SOX, PCI, GDPR, and HIPAA
    Watch Now.

  • Comply in 5! Well, actually UNDER 5 minutes!!

    SB CYBRA PPL 5382

    TRY the one package that solves all your document design and printing challenges on all your platforms.

    Produce bar code labels, electronic forms, ad hoc reports, and RFID tags – without programming! MarkMagic is the only document design and print solution that combines report writing, WYSIWYG label and forms design, and conditional printing in one integrated product.

    Request your trial now!

  • Backup and Recovery on IBM i: Your Strategy for the Unexpected

    SB HelpSystems SC 5413Robot automates the routine tasks of iSeries backup and recovery, saving you time and money and making the process safer and more reliable. Automate your backups with the Robot Backup and Recovery Solution. Key features include:
    - Simplified backup procedures
    - Easy data encryption
    - Save media management
    - Guided restoration
    - Seamless product integration
    Make sure your data survives when catastrophe hits. Try the Robot Backup and Recovery Solution FREE for 30 days.

  • Manage IBM i Messages by Exception with Robot

    SB HelpSystems SC 5413Managing messages on your IBM i can be more than a full-time job if you have to do it manually. How can you be sure you won’t miss important system events?
    Automate your message center with the Robot Message Management Solution. Key features include:
    - Automated message management
    - Tailored notifications and automatic escalation
    - System-wide control of your IBM i partitions
    - Two-way system notifications from your mobile device
    - Seamless product integration
    Try the Robot Message Management Solution FREE for 30 days.

  • Easiest Way to Save Money? Stop Printing IBM i Reports

    SB HelpSystems SC 5413Robot automates report bursting, distribution, bundling, and archiving, and offers secure, selective online report viewing.
    Manage your reports with the Robot Report Management Solution. Key features include:

    - Automated report distribution
    - View online without delay
    - Browser interface to make notes
    - Custom retention capabilities
    - Seamless product integration
    Rerun another report? Never again. Try the Robot Report Management Solution FREE for 30 days.

  • Hassle-Free IBM i Operations around the Clock

    SB HelpSystems SC 5413For over 30 years, Robot has been a leader in systems management for IBM i.
    Manage your job schedule with the Robot Job Scheduling Solution. Key features include:
    - Automated batch, interactive, and cross-platform scheduling
    - Event-driven dependency processing
    - Centralized monitoring and reporting
    - Audit log and ready-to-use reports
    - Seamless product integration
    Scale your software, not your staff. Try the Robot Job Scheduling Solution FREE for 30 days.

  • ACO MONITOR Manages your IBM i 24/7 and Notifies You When Your IBM i Needs Assistance!

    SB DDL Systems 5429More than a paging system - ACO MONITOR is a complete systems management solution for your Power Systems running IBM i. ACO MONITOR manages your Power System 24/7, uses advanced technology (like two-way messaging) to notify on-duty support personnel, and responds to complex problems before they reach critical status.

    ACO MONITOR is proven technology and is capable of processing thousands of mission-critical events daily. The software is pre-configured, easy to install, scalable, and greatly improves data center efficiency.