Sidebar

Maximize the Abilities of the LDA

RPG
Typography
  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

Store pointers in a job's Local Data Area.

 

The Local Data Area (LDA) is a user-domain, permanent space object (with MI object type code/subtype code hex 19CE) that is allocated to each IBM i job by the system when the job becomes active. The 1024-byte storage of an LDA can be accessed through CL commands (DSPDTAARA, RTVDTAARA, CHGDTAARA, and CHGVAR), APIs (QXXRTVDA and QXXCHGDA), or built-in support of high-level languages (the IN and OUT opcodes of RPG, and the ACCEPT and DISPLAY statements of COBOL).

 

You can use the LDA to do a variety of things:

  • Exchange information between all programs being called within the same job. It's important that the LDA can be used to store data that is expected to have the same lifetime as the job. Activation group-based storage (static storage and heap storage) will be reclaimed when the corresponding activation group is reclaimed by the RCLACTGRP command or the RCLRSC command or when a new routing step is started for the job as a result of using a RRTJOB, TFRJOB, or TFRBCHJOB command. By contrast, the LDA contents exist across routing steps and will be kept even when the job is in the *OUTQ status.
  • Pass information to a submitted job by loading your information into the LDA of your current job and submitting the job. Then, you can access the data from within your submitted job since the content of the current job's LDA is copied to the submitted job's LDA.
  • Store information without the overhead of creating and deleting a data area or a user space yourself. (LDAs are created as permanent objects and are managed by the system. When a job ends, the LDA allocated to it will be returned to the system for reuse.)

 

Unfortunately, there is a limit on the usage of the LDA: none of all existing programming interfaces that access LDAs supports storing MI pointers in an LDA, or in other words, an MI pointer being stored in an LDA via any existing programming interface will become invalid and cannot be used anymore. So what if MI pointers can be stored in the LDA?

  • A space pointer stored in the LDA can allow programs that exchange data via the LDA to overcome the 1024 bytes size limit.
  • Storing a resolved system pointer in an MI object instead of storing symbolic ID of it in the LDA can save the expense of resolving a system pointer to the MI object each time it's referred to.
  • Storing other types of MI pointers in the LDA may also make sense in different scenarios. For example, procedure pointers can be stored in the LDA and shared by programs within a same job to achieve dynamic procedure calls.

 

And here comes the next question. Given the fact that no existing programming interface can be used to store valid MI pointers in the LDA, is it possible for a user program to achieve this goal? Theoretically, the answer is yes. First, since the LDA is in the user domain, once you obtain a system pointer to an LDA with proper authorities set, you can access it in a user-state program; second, since the LDA contents are stored in a piece of storage in its associated space, once the LDA format is available, you can write MI pointers into the LDA and read them out of it later.

Where Can We Locate the LDA of the Current Job?

When an IBM i job becomes active, system pointers to the job's LDA can be found in the following two places:

  • The Work Control Block Table, or WCBT, entry of the job (space objects are called QWCBT## in the QSYS library—for example, QSYS/QWCBT01)
  • The job's temporary Work Control Block (WCB) aka the Process Communication Object (PCO)

The WCBT is in the system domain and cannot be accessed from a user-state program at security level 40 or above, so for a user-state program, to locate the LDA, you should turn to the PCO. A system pointer to the LDA of a job can be found at offset hex 0230 in its PCO. The following pieces of code examples locate the LDA pointer in the PCO in OPM MI and ILE RPG, respectively. Note that to retrieve a space pointer to the PCO in ILE high-level languages, you need to turn to the system built-in _PCOPTR2, which returns a space pointer addressing the current job's PCO.

 

MI example of locating the LDA pointer in the PCO:

 

dcl spc pco baspco                      ;

        dcl sysptr lda dir pos(h"231")  ;

 

ILE RPG example of locating the LDA pointer in the PCO:

 

     d pcoptr2         pr              *   extproc('_PCOPTR2')

 

     d @pco            s               *

     d pco             ds                  qualified

     d                                     based(@pco)

     d                                 *   dim(35)

     d   lda                           *

      /free

           @pco = pcoptr2();

           // Now the system pointer <var>lda</var> becomes valid.

      /end-free

The LDA Format

Like common data area (DTAARA) objects, the data contents of the LDA are stored in its associated space. The format of a common DTAARA is quite straightforward, from the beginning of a common DTAARA's associated space there are the following fields:

  • CHAR(1) data area type. The value of this field is hex 03 for a *DEC data area, hex 04 for a *CHAR data area, and hex 84 for a *LGL data area.
  • BIN(2) data length.
  • Data contents of length indicated by the data length field.
  • In comparison with common data areas, the format of the LDA is a bit more complicated. At offset hex 08 of the LDA's associated space, there is a BIN(2) field that indicates the start position of the actual data area portion in the LDA's associated space. Beginning from the start position of the actual data area portion, there are fields that are similar to those of a common data area: CHAR(1) data area type(the value of this field for the LDA is always hex 04); BIN(2) data length (the value of this field for the LDA is always hex 0400, 1024 bytes); 1024-byte data contents.

 

By now, steps to access the contents of the LDA are very clear:

  1. Locate the system pointer addressing the LDA in the PCO at offset hex 0230.
  2. Retrieve a space pointer addressing the start of the associated space of the LDA via the Set Space Pointer from Pointer (SETSPPFP) MI instruction.
  3. In the associated space of the LDA, offset to the actual data area portion of the LDA by using the BIN(2) start position field at offset hex 08.
  4. Write scalar or pointer data items to or read scalar or pointer data items from the 1024-byte data contents of the LDA.

 

The following tiny MI program, lda01.emi, demonstrates the above steps by copying a system pointer to the QTEMP library of the current job to the data contents of the LDA.

 

dcl spc pco baspco                      ;

        dcl sysptr qtemp dir pos(h"41") ; /* [1] */

        dcl sysptr lda dir pos(h"231")  ; /* [2] */

 

dcl spcptr lda-spc-ptr auto           ;

dcl spc lda-spc bas(lda-spc-ptr)      ;

        dcl dd lda-start bin(2) dir pos(9) ; /* [3] */

 

dcl spcptr lda-area-ptr auto              ;

dcl spc lda-area bas(lda-area-ptr)        ;

        dcl dd lda-type char(1) dir       ;

        dcl dd lda-dta-len bin(2) dir     ;

        dcl dd lda-dta-buf char(1024) dir ;

 

        setsppfp lda-spc-ptr, lda ; /* [4] */

        addspp lda-area-ptr,

          lda-spc-ptr, lda-start  ; /* [5] */

        cpybwp lda-dta-buf, qtemp ; /* [6] */

brk "END"                         ;

        rtx *                     ;

pend                              ;

 

Code notes:

[1] A system pointer to the QTEMP library of the current job can be found in the PCO at offset hex 40.

[2] A system pointer to the LDA of the current job can be found in the PCO at offset hex 0230.

[3] A BIN(2) field in the associated space of the LDA at offset hex 08 indicates the start position of the actual data area portion of the LDA in its associated space.

[4] Invoking the SETSPPFP instruction on the system pointer to the LDA returns a space pointer addressing the start of the LDA's associated space.

[5] Offset to the actual data area portion within the associated space of the LDA.

[6] Copy the system pointer to the QTEMP library to the data contents of the LDA.

A Real Example of Exchanging MI Pointers Between Programs via the LDA

To demonstrate further usage of storing MI pointers in the LDA, especially in ILE RPG, I'd like to introduce another (and maybe more practical) example: implementing dynamic procedure calls by storing procedure pointers in the LDA.

 

Imagine that you have a bundle of procedures implementing the same functionality in subtly different manners, and one of them should be called to achieve the target functionality has to be determined at run time. The ability of issuing dynamic procedure calls is necessary, and the LDA might be one of the places where you store procedure pointers to the selected procedures. The following are two example RPG programs: lda03.rpgle and lda04.rpgle. LDA03 is responsible for selecting a procedure pointer to a procedure within itself at run time and placing it in the LDA. And LDA04 is expected to run in the same job with LDA03 and call the procedure selected by LDA03 via the procedure pointer. Obviously, when LDA04 is called, LDA03 must have already been activated into one of the activation groups of the current job.

 

LDA03

     h dftactgrp(*no)

 

      /copy mih-prcthd

      /copy mih-ptr

     d i_main          pr                  extpgm('LDA03')

     d   flag                         1a

 

     d @pco            s               *

     d pco             ds                  qualified

     d                                     based(@pco)

     d                                 *   dim(35)

     d   lda                           *

     d   ldaproc                       *   overlay(lda)

     d                                     procptr

     d ldaspcptr                       *

     d ldaspc          ds                  qualified

     d                                     based(ldaspcptr)

     d                                8a

     d   start                        5u 0

     d ldaaraptr       s               *

     d ldaara          ds                  qualified

     d                                     based(ldaaraptr)

     d   ldatype                      1a

     d   ldalen                       5u 0

     d   dta                       1024a

     d funcptr         s               *   procptr

 

     d addi            pr            10i 0

     d   addent1                     10i 0 value

     d   addent2                     10i 0 value

      * round the sum to ten

     d addih           pr            10i 0

     d   addent1                     10i 0 value

     d   addent2                     10i 0 value

 

     d i_main          pi

     d   flag                         1a

 

      /free

           // Locate the LDA pointer in the PCO

           @pco = pcoptr2();

           // Address the associated space of the LDA

           ldaspcptr = setsppfp(pco.ldaproc);

           // Offset to the actual data area portion

           ldaaraptr = ldaspcptr + ldaspc.start;

 

           // Store selected procedure pointer in the LDA

           if %parms() > 0 and flag = 'H';

               funcptr = %paddr(addih);

           else;

               funcptr = %paddr(addi);

           endif;

           cpybwp( %addr(ldaara.dta)

                 : %addr(funcptr)

                 : 16 );

 

           *inlr = *on;

      /end-free

 

     p addi            b

     d addi            pi            10i 0

     d   addent1                     10i 0 value

     d   addent2                     10i 0 value

      /free

           return (addent1 + addent2);

      /end-free

     p                 e

 

     p addih           b

     d addih           pi            10i 0

     d   addent1                     10i 0 value

     d   addent2                     10i 0 value

     d r               s             10i 0

     d addih           pr            10i 0

      /free

           r = (addent1 + addent2) / 10;

           return (r * 10);

      /end-free

     p                 e

 

LDA04

     h dftactgrp(*no)

 

      /copy mih-prcthd

      /copy mih-ptr

     d @pco            s               *

     d pco             ds                  qualified

     d                                     based(@pco)

     d                                 *   dim(35)

     d   lda                           *

     d   ldaproc                       *   overlay(lda)

     d                                     procptr

     d ldaspcptr                       *

     d ldaspc          ds                  qualified

     d                                     based(ldaspcptr)

     d                                8a

     d   start                        5u 0

     d ldaaraptr       s               *

     d ldaara          ds                  qualified

     d                                     based(ldaaraptr)

     d   ldatype                      1a

     d   ldalen                       5u 0

     d   dta                       1024a

     d funcptr         s               *   procptr

     d i               s             10i 0

 

     d func            pr            10i 0 extproc(funcptr)

     d   parm1                       10i 0 value

     d   parm2                       10i 0 value

 

      /free

           // Locate the LDA pointer in the PCO

           @pco = pcoptr2();

           // Address the associated space of the LDA

           ldaspcptr = setsppfp(pco.ldaproc);

           // Offset to the actual data area portion

           ldaaraptr = ldaspcptr + ldaspc.start;

 

           // Load PROCPTR funcptr from the LDA

           cpybwp( %addr(funcptr)

                 : %addr(ldaara.dta)

                 : 16 );

           // Call target procedure via PROCPTR funcptr

           i = func(955 : 6);

           dsply 'i' '' i;

 

           *inlr = *on;

      /end-free

 

Note that the prototypes of the _PCOPTR2, _SETSPPFP, and _CPYBWP system built-ins that are used in the above examples can be found in mih-prcthd.rpgleinc and mih-ptr.rpgleinc, which are provided by the open-source project i5toolkit.

 

Call LDA03 and LDA04 as follows and enjoy the tiny dynamic procedure call utility you've implemented via the LDA:

 

4 > call lda03           

4 > call lda04           

    DSPLY  i           961

4 > call lda03 h         

4 > call lda04           

    DSPLY  i           960

Cautions of Using the LDA

Now you've seen that the LDA is very powerful, especially when being used to store data that is expected to have the same lifetime as the job. Additionally, the ability of storing valid MI pointers in the LDA extended the abilities of the LDA dramatically. However, remember that sharp tools can be dangerous when being misused. Here are a couple of additional considerations about using the LDA to exchange information between programs within a job:

  • In a job in which programs belonging to different users could be run, storing security-sensitive data that should be accessible by only one or some of the users can be dangerous because the LDA contents are available to all programs (and their owners) within the job.
  • Attention should be paid to the validity of the storage addressed by pointers being stored in the LDA and the validity of the pointers themselves. For example, automatic storage is invocation-dependent, static storage and heap storage are activation group-dependent, and the validity of a procedure pointer is dependent on the activation status of its containing program.

 

Junlei Li

Junlei Li is a programmer from Tianjin, China, with 10 years of experience in software design and programming. Junlei Li began programming under i5/OS (formerly known as AS/400, iSeries) in late 2005. He is familiar with most programming languages available on i5/OS—from special-purpose languages such as OPM/ILE RPG to CL to general-purpose languages such as C, C++, Java; from strong-typed languages to script languages such as QShell and REXX. One of his favorite programming languages on i5/OS is machine interface (MI) instructions, through which one can discover some of the internal behaviors of i5/OS and some of the highlights of i5/OS in terms of operating system design.

 

Junlei Li's Web site is http://i5toolkit.sourceforge.net/, where his open-source project i5/OS Programmer's Toolkit (https://sourceforge.net/projects/i5toolkit/) is documented.

BLOG COMMENTS POWERED BY DISQUS

LATEST COMMENTS

Support MC Press Online

RESOURCE CENTER

  • WHITE PAPERS

  • WEBCAST

  • TRIAL SOFTWARE

  • White Paper: Node.js for Enterprise IBM i Modernization

    SB Profound WP 5539

    If your business is thinking about modernizing your legacy IBM i (also known as AS/400 or iSeries) applications, you will want to read this white paper first!

    Download this paper and learn how Node.js can ensure that you:
    - Modernize on-time and budget - no more lengthy, costly, disruptive app rewrites!
    - Retain your IBM i systems of record
    - Find and hire new development talent
    - Integrate new Node.js applications with your existing RPG, Java, .Net, and PHP apps
    - Extend your IBM i capabilties to include Watson API, Cloud, and Internet of Things


    Read Node.js for Enterprise IBM i Modernization Now!

     

  • Profound Logic Solution Guide

    SB Profound WP 5539More than ever, there is a demand for IT to deliver innovation.
    Your IBM i has been an essential part of your business operations for years. However, your organization may struggle to maintain the current system and implement new projects.
    The thousands of customers we've worked with and surveyed state that expectations regarding the digital footprint and vision of the companyare not aligned with the current IT environment.

    Get your copy of this important guide today!

     

  • 2022 IBM i Marketplace Survey Results

    Fortra2022 marks the eighth edition of the IBM i Marketplace Survey Results. Each year, Fortra captures data on how businesses use the IBM i platform and the IT and cybersecurity initiatives it supports.

    Over the years, this survey has become a true industry benchmark, revealing to readers the trends that are shaping and driving the market and providing insight into what the future may bring for this technology.

  • Brunswick bowls a perfect 300 with LANSA!

    FortraBrunswick is the leader in bowling products, services, and industry expertise for the development and renovation of new and existing bowling centers and mixed-use recreation facilities across the entertainment industry. However, the lifeblood of Brunswick’s capital equipment business was running on a 15-year-old software application written in Visual Basic 6 (VB6) with a SQL Server back-end. The application was at the end of its life and needed to be replaced.
    With the help of Visual LANSA, they found an easy-to-use, long-term platform that enabled their team to collaborate, innovate, and integrate with existing systems and databases within a single platform.
    Read the case study to learn how they achieved success and increased the speed of development by 30% with Visual LANSA.

     

  • The Power of Coding in a Low-Code Solution

    LANSAWhen it comes to creating your business applications, there are hundreds of coding platforms and programming languages to choose from. These options range from very complex traditional programming languages to Low-Code platforms where sometimes no traditional coding experience is needed.
    Download our whitepaper, The Power of Writing Code in a Low-Code Solution, and:

    • Discover the benefits of Low-code's quick application creation
    • Understand the differences in model-based and language-based Low-Code platforms
    • Explore the strengths of LANSA's Low-Code Solution to Low-Code’s biggest drawbacks

     

     

  • Why Migrate When You Can Modernize?

    LANSABusiness users want new applications now. Market and regulatory pressures require faster application updates and delivery into production. Your IBM i developers may be approaching retirement, and you see no sure way to fill their positions with experienced developers. In addition, you may be caught between maintaining your existing applications and the uncertainty of moving to something new.
    In this white paper, you’ll learn how to think of these issues as opportunities rather than problems. We’ll explore motivations to migrate or modernize, their risks and considerations you should be aware of before embarking on a (migration or modernization) project.
    Lastly, we’ll discuss how modernizing IBM i applications with optimized business workflows, integration with other technologies and new mobile and web user interfaces will enable IT – and the business – to experience time-added value and much more.

     

  • UPDATED: Developer Kit: Making a Business Case for Modernization and Beyond

    Profound Logic Software, Inc.Having trouble getting management approval for modernization projects? The problem may be you're not speaking enough "business" to them.

    This Developer Kit provides you study-backed data and a ready-to-use business case template to help get your very next development project approved!

  • What to Do When Your AS/400 Talent Retires

    FortraIT managers hoping to find new IBM i talent are discovering that the pool of experienced RPG programmers and operators or administrators is small.

    This guide offers strategies and software suggestions to help you plan IT staffing and resources and smooth the transition after your AS/400 talent retires. Read on to learn:

    • Why IBM i skills depletion is a top concern
    • How leading organizations are coping
    • Where automation will make the biggest impact

     

  • Node.js on IBM i Webinar Series Pt. 2: Setting Up Your Development Tools

    Profound Logic Software, Inc.Have you been wondering about Node.js? Our free Node.js Webinar Series takes you from total beginner to creating a fully-functional IBM i Node.js business application. In Part 2, Brian May teaches you the different tooling options available for writing code, debugging, and using Git for version control. Attend this webinar to learn:

    • Different tools to develop Node.js applications on IBM i
    • Debugging Node.js
    • The basics of Git and tools to help those new to it
    • Using NodeRun.com as a pre-built development environment

     

     

  • Expert Tips for IBM i Security: Beyond the Basics

    SB PowerTech WC GenericIn this session, IBM i security expert Robin Tatam provides a quick recap of IBM i security basics and guides you through some advanced cybersecurity techniques that can help you take data protection to the next level. Robin will cover:

    • Reducing the risk posed by special authorities
    • Establishing object-level security
    • Overseeing user actions and data access

    Don't miss this chance to take your knowledge of IBM i security beyond the basics.

     

     

  • 5 IBM i Security Quick Wins

    SB PowerTech WC GenericIn today’s threat landscape, upper management is laser-focused on cybersecurity. You need to make progress in securing your systems—and make it fast.
    There’s no shortage of actions you could take, but what tactics will actually deliver the results you need? And how can you find a security strategy that fits your budget and time constraints?
    Join top IBM i security expert Robin Tatam as he outlines the five fastest and most impactful changes you can make to strengthen IBM i security this year.
    Your system didn’t become unsecure overnight and you won’t be able to turn it around overnight either. But quick wins are possible with IBM i security, and Robin Tatam will show you how to achieve them.

  • Security Bulletin: Malware Infection Discovered on IBM i Server!

    SB PowerTech WC GenericMalicious programs can bring entire businesses to their knees—and IBM i shops are not immune. It’s critical to grasp the true impact malware can have on IBM i and the network that connects to it. Attend this webinar to gain a thorough understanding of the relationships between:

    • Viruses, native objects, and the integrated file system (IFS)
    • Power Systems and Windows-based viruses and malware
    • PC-based anti-virus scanning versus native IBM i scanning

    There are a number of ways you can minimize your exposure to viruses. IBM i security expert Sandi Moore explains the facts, including how to ensure you're fully protected and compliant with regulations such as PCI.

     

     

  • Encryption on IBM i Simplified

    SB PowerTech WC GenericDB2 Field Procedures (FieldProcs) were introduced in IBM i 7.1 and have greatly simplified encryption, often without requiring any application changes. Now you can quickly encrypt sensitive data on the IBM i including PII, PCI, PHI data in your physical files and tables.
    Watch this webinar to learn how you can quickly implement encryption on the IBM i. During the webinar, security expert Robin Tatam will show you how to:

    • Use Field Procedures to automate encryption and decryption
    • Restrict and mask field level access by user or group
    • Meet compliance requirements with effective key management and audit trails

     

  • Lessons Learned from IBM i Cyber Attacks

    SB PowerTech WC GenericDespite the many options IBM has provided to protect your systems and data, many organizations still struggle to apply appropriate security controls.
    In this webinar, you'll get insight into how the criminals accessed these systems, the fallout from these attacks, and how the incidents could have been avoided by following security best practices.

    • Learn which security gaps cyber criminals love most
    • Find out how other IBM i organizations have fallen victim
    • Get the details on policies and processes you can implement to protect your organization, even when staff works from home

    You will learn the steps you can take to avoid the mistakes made in these examples, as well as other inadequate and misconfigured settings that put businesses at risk.

     

     

  • The Power of Coding in a Low-Code Solution

    SB PowerTech WC GenericWhen it comes to creating your business applications, there are hundreds of coding platforms and programming languages to choose from. These options range from very complex traditional programming languages to Low-Code platforms where sometimes no traditional coding experience is needed.
    Download our whitepaper, The Power of Writing Code in a Low-Code Solution, and:

    • Discover the benefits of Low-code's quick application creation
    • Understand the differences in model-based and language-based Low-Code platforms
    • Explore the strengths of LANSA's Low-Code Solution to Low-Code’s biggest drawbacks

     

     

  • The Biggest Mistakes in IBM i Security

    SB Profound WC Generic The Biggest Mistakes in IBM i Security
    Here’s the harsh reality: cybersecurity pros have to get their jobs right every single day, while an attacker only has to succeed once to do incredible damage.
    Whether that’s thousands of exposed records, millions of dollars in fines and legal fees, or diminished share value, it’s easy to judge organizations that fall victim. IBM i enjoys an enviable reputation for security, but no system is impervious to mistakes.
    Join this webinar to learn about the biggest errors made when securing a Power Systems server.
    This knowledge is critical for ensuring integrity of your application data and preventing you from becoming the next Equifax. It’s also essential for complying with all formal regulations, including SOX, PCI, GDPR, and HIPAA
    Watch Now.

  • Comply in 5! Well, actually UNDER 5 minutes!!

    SB CYBRA PPL 5382

    TRY the one package that solves all your document design and printing challenges on all your platforms.

    Produce bar code labels, electronic forms, ad hoc reports, and RFID tags – without programming! MarkMagic is the only document design and print solution that combines report writing, WYSIWYG label and forms design, and conditional printing in one integrated product.

    Request your trial now!

  • Backup and Recovery on IBM i: Your Strategy for the Unexpected

    FortraRobot automates the routine tasks of iSeries backup and recovery, saving you time and money and making the process safer and more reliable. Automate your backups with the Robot Backup and Recovery Solution. Key features include:
    - Simplified backup procedures
    - Easy data encryption
    - Save media management
    - Guided restoration
    - Seamless product integration
    Make sure your data survives when catastrophe hits. Try the Robot Backup and Recovery Solution FREE for 30 days.

  • Manage IBM i Messages by Exception with Robot

    SB HelpSystems SC 5413Managing messages on your IBM i can be more than a full-time job if you have to do it manually. How can you be sure you won’t miss important system events?
    Automate your message center with the Robot Message Management Solution. Key features include:
    - Automated message management
    - Tailored notifications and automatic escalation
    - System-wide control of your IBM i partitions
    - Two-way system notifications from your mobile device
    - Seamless product integration
    Try the Robot Message Management Solution FREE for 30 days.

  • Easiest Way to Save Money? Stop Printing IBM i Reports

    FortraRobot automates report bursting, distribution, bundling, and archiving, and offers secure, selective online report viewing.
    Manage your reports with the Robot Report Management Solution. Key features include:

    - Automated report distribution
    - View online without delay
    - Browser interface to make notes
    - Custom retention capabilities
    - Seamless product integration
    Rerun another report? Never again. Try the Robot Report Management Solution FREE for 30 days.

  • Hassle-Free IBM i Operations around the Clock

    SB HelpSystems SC 5413For over 30 years, Robot has been a leader in systems management for IBM i.
    Manage your job schedule with the Robot Job Scheduling Solution. Key features include:
    - Automated batch, interactive, and cross-platform scheduling
    - Event-driven dependency processing
    - Centralized monitoring and reporting
    - Audit log and ready-to-use reports
    - Seamless product integration
    Scale your software, not your staff. Try the Robot Job Scheduling Solution FREE for 30 days.